Abstract
In this paper, the crosstalk effects in both small and large diameter multiwalled carbon nanotube bundle interconnects (MWCNTs) for the future nanoscale integrated circuits are studied with the help of ABCD parameter matrix approach for global levels of interconnects at 22- and 14-nm technology nodes. Here, isolated MWCNTs are modeled using an equivalent single conductor transmission line. The simulation results show that the results are at par with the result of SPICE model. It is observed that performance wise, the large diameter MWCNT bundles are better than both small diameter MWCNT bundles and copper wire for both repeated and unrepeated interconnects. The same trend is observed with the number of inserted repeaters. For repeated wires, the optimized placement of repeaters offsets the delay advantage numbers of MWCNT bundles over copper wire. Technology scaling adversely impacts the delay advantage numbers of small diameter MWCNT bundles. As far as the worst-case crosstalk noise peak voltage is concerned, the large diameter MWCNT bundles also outperform both small diameter MWCNT bundles and copper wire for longer interconnects. However, for shorter interconnects, copper wire and small diameter bundles outclass the large diameter bundles due to their relatively larger time constant. We have compared our crosstalk analysis results with the earlier work to justify the validity of our proposed model and observed that the results with our model are in well conformity with the existing work. It is seen that even the tall Cu vias are not going to significantly affect the performance of MWCNT bundle interconnects. Twice the minimum width global level interconnects are the optimal choice to achieve the maximum delay advantage using MWCNT bundle interconnects in comparison with Cu-based interconnects. Finally, our analysis shows that from the performance and signal integrity perspective, the large diameter MWCNT bundles are a suitable alternative to both small diameter MWCNT bundles and copper interconnects for future integrated circuit technology generations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.