Abstract

Subject of Research. We study the methods for determination of the physical and mechanical characteristics of materials based on parameters recording of a solid body-indenter impact interaction with the surface of the material under test. Among the methods considered, the method of dynamic indentation was chosen for further research. With the development of computing devices and electronic element base this method acquires new opportunities and advantages over the other methods of nondestructive testing. They are: the possibility of portable implementation of the device, an unrestricted control of products, the possibility of F-h diagrams construction and others. Method. We consider the application of the developed algorithm for the primary processing of a measuring signal obtained from a primary transducer under dynamic indentation. The results of the algorithm are compared with the results obtained from the ISPG-1 dynamic indentation device, previously developed at the Institute of Applied Physics of the National Academy of Sciences of Belarus. The results of the measuring signal processing were also compared with the results of computer simulation of the process of shock contact interaction by the finite element method. Main Results. An algorithm for processing of dynamic indentation primary signals is proposed. A model of dynamic indentation process is proposed. It is shown that the developed algorithm and model are efficient and show similar results in comparison with the results obtained with the existing dynamic indentation device. Practical Relevance. The obtained results can be used in the development of the domestic analogue of the dynamic indentation device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call