Abstract

Using the metaphor of swarm intelligence, ant-based routing protocols deploy control packets that behave like ants to discover and optimize routes between pairs of nodes. These ant-based routing protocols provide an elegant, scalable solution to the routing problem for both wired and mobile ad hoc networks. The routing problem is highly nonlinear because the control packets alter the local routing tables as they are routed through the network. We mathematically map the local rules by which the routing tables are altered to the dynamics of the entire networks. Using dynamical systems theory, we map local protocol rules to full network performance, which helps us understand the impact of protocol parameters on network performance. In this paper, we systematically derive and analyze global models for simple ant-based routing protocols using both pheromone deposition and evaporation. In particular, we develop a stochastic model by modeling the probability density of ants over the network. The model is validated by comparing equilibrium pheromone levels produced by the global analysis to results obtained from simulation studies. We use both a Matlab simulation with ideal communications and a QualNet simulation with realistic communication models. Using these analytic and computational methods, we map out a complete phase diagram of network behavior over a small multipath network. We show the existence of both stable and unstable (inaccessible) routing solutions having varying properties of efficiency and redundancy depending upon the routing parameters. Finally, we apply these techniques to a larger 50-node network and show that the design principles acquired from studying the small model network extend to larger networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call