Abstract

A dynamic model describing physical–chemical and biological processes for the removal of high loads of H2S from biogas streams in biotrickling filters (BTFs) was developed, calibrated and validated for a wide range of experimental conditions in a lab-scale BTF. The model considers the main processes occurring in the three phases of a BTF (gas, liquid and biofilm) in a co-current flow mode configuration. Furthermore, this model attempts to describe accurately the intermediate (thiosulfate and elemental sulfur) and final products (sulfate) of H2S oxidation. A sensitivity analysis was performed in order to focus parameters estimation efforts on those parameters that showed the highest influence on the estimation of the H2S removal efficiency, the accumulated mass of sulfur and the sulfate concentration in the liquid phase. Biofilm and liquid layer thicknesses, specific growth rate of biomass over elemental sulfur and the H2S global mass transfer coefficient were the parameters that showed the highest influence on model outputs. Experimental data for model calibration corresponded to the operation of the BTF under stepwise increasing H2S concentrations between 2000 and 10,000ppmv. Once the model was calibrated, validation was performed by simulating a stationary feeding period of 42days of operation of the BTF at an average concentration of 2000ppmv and a dynamic operation period where the BTF was operated under variable inlet H2S concentration between 1000 and 5000ppmv to simulate load fluctuations occurring in industrial facilities. The model described the reactor performance in terms of H2S removal and predicted satisfactorily the main intermediate and final products produced during the biological oxidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.