Abstract

Climate change has posed serious challenges to food production and sustainable development. We evaluated crop yields, N2O emissions, and soil organic carbon (SOC) in a typical wheat–corn rotation system field on the North China Plain on a 50-year scale using the Denitrification–Decomposition (DNDC) model and proposed adaptive strategies for each climate scenarios. The study showed a good consistency between observations and simulations (R2 > 0.95 and nRMSE < 30%). Among the twelve climate scenarios, we explored ten management practices under four climate scenarios (3 °C temperature change: P/T−3 and P/T+3; 30% precipitation change: 0.7P/T and 1.3P/T), which have a significant impact on crop yields and the net greenhouse effect. The results revealed that changing the crop planting time (CP) and using cold-resistant (CR) varieties could reduce the net greenhouse effect by more than 1/4 without sacrificing crop yields under P/T−3. Straw return (SR) minimized the negative impact on yields and the environment under P/T+3. Fertigation (FG) and Drought-Resistant (DR) varieties reduced the net greenhouse effect by more than 8.34% and maintained yields under 0.7P/T. SR was most beneficial to carbon sequestration, and yields were increased by 3.87% under 1.3P/T. Multiple adaptive strategies should be implemented to balance yields and reduce the environmental burden under future climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.