Abstract

Lane-changing is a complicated task and has a high probability of accident occurrence. Although a large body of literature has used vehicle trajectories to microscopically understand and model lane-changing behavior, most of these studies focus on lane-changing decision making and lane changing's impacts on surrounding vehicles, not on traffic safety. The contributing factors to lane-changing risks have not been fully explored from the perspective of microscopic behavior using vehicle trajectory data. This study investigates the contributing factors to accident risks in different lane-changing patterns with taking unobserved heterogeneity into account. A vehicle trajectory dataset, HighD is used and 4842 lane-changing vehicle groups are extracted for analysis. These vehicle groups are divided into sixteen patterns according to the vehicle type, and three major patterns are examined. A lane-changing risk index (LCRI) is proposed to evaluate the risk level of each vehicle group. Two methods are developed and compared for exploring lane-changing risks of the three patterns including (1) establishing the random parameters fractional logit models; and (2) classifying LCRI by k-means algorithm and establishing random parameters ordered logit models with heterogeneity in means and variances. The modeling results show that the latter method performs better and the risk level of the vehicle group is strongly associated with (1) the mean and standard deviation of the gap distance between vehicles; (2) the longitudinal velocities and acceleration of vehicles; and (3) the lane-changing direction and duration. However, different patterns are found to have different contributing variables and effects. The effects of gap distances vary considerably across different vehicle groups and the longitudinal velocity of vehicles are associated with the means of random parameters for gap distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.