Abstract

The 3D sliding electrical contact model considering thermal-mechanical-electrical coupling is presented in this paper. The semi-analytical method (SAM) is used to solve this complex multi-physical contact model. Firstly, the frequency response functions (FRFs) for thermal-mechanical-electrical fields are derived. Then, with discrete convolution and fast Fourier transform (DC-FFT) speeding calculation, a solving procedure, including the conjugate gradient method for force balance and algorithms for electrical potential equilibrium and heat flux partition, is proposed for the first time to solve the fully coupled electrical contact problem. Last, the effects of multiple loadings including the current, normal force, and sliding velocity on electrical contact behaviors are systematically investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call