Abstract

Ultra high-speed and reliable next-generation 6G mobile networks are recognized as key enablers for many innovative scenarios in smart cities – from vehicular use cases and surveillance to healthcare. However, deployment of such network requires tremendous amount of time and involves various costs. For that reason, optimal network planning is of utmost importance for development of 6G mobile networks in smart cities. In this paper, we explore the potential of multi-objective linear optimization in synergy with model-driven approach in order to achieve efficient network planning in smart cities. As outcome, a solution relying on pymoo is proposed and compared to previous works relying only on single objective implemented in AMPL. According to the achieved results, this approach speeds up the execution, while giving more flexibility when it comes to cost/performance trade-offs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call