Abstract

The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor climate and the overall thermal performance of buildings. In this work, the development of a Building Energy Analysis Model (BEAM) predicting whole building heat and moisture transfer is presented. The coupled heat and moisture transfer model takes into account most of the main hygrothermal effects in buildings. The coupled system model is implemented in Matlab, and verified with EnergyPlus. Furthermore, BEAM is reduced via a physically based model order reduction to a lower order system model (Re-BEAM) to be easily integrated with a control algorithm. By utilizing Re-BEAM, a Model-Based Predictive Control (MBPC) method is developed to incorporate critical building information into control algorithms, such that the building energy consumption is minimized while comfort conditions are maintained. The resulting optimal setpoint schedule can be applied on any HVAC system. Simulation results of a building structure demonstrate the superiority in terms of energy and peak load reductions compared with traditional constant control methods and control methods that use a occupants-varying temperature schedule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.