Abstract

Computed Tomography (CT) Image Reconstruction is an important technique used in a variety of domains, including medical imaging, electron microscopy, non-destructive testing and transportation security. Model-based Iterative Reconstruction (MBIR) using Iterative Coordinate Descent (ICD) is a CT algorithm that produces state-of-the-art results in terms of image quality. However, MBIR is highly computationally intensive and challenging to parallelize, and has traditionally been viewed as impractical in applications where reconstruction time is critical. We present the first GPU-based algorithm for ICD-based MBIR. The algorithm leverages the recently-proposed concept of SuperVoxels, and efficiently exploits the three levels of parallelism available in MBIR to better utilize the GPU hardware resources. We also explore data layout transformations to obtain more coalesced accesses and several GPU-specific optimizations for MBIR that boost performance. Across a suite of 3200 test cases, our GPU implementation obtains a geometric mean speedup of 4.43X over a state-of-the-art multi-core implementation on a 16-core iso-power CPU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call