Abstract

A promising mechanical bearing candidate for an active operation is the tilting-pad bearing. The proposed active tilting-pad bearing has linear actuators that radially translate each pad/pivot pair. The use of feedback control in determining the actuator forces allows for the automatic, continuous adjustment of the pad position during the operation of the rotating machine. In this paper, we develop a nonlinear dynamic model of the active bearing system. The hydrodynamic force produced by the fluid film is modeled as a nonlinear, squeeze-film damper plus repellent spring. A model-based nonlinear controller is then designed to exponentially regulate the rotor position to the origin. A proof-of-concept experiment shows that the active strategy improves the bearing performance relative to its traditional passive operation. Further, the experiment demonstrates that the model-based nonlinear control regulates the rotor comparably to a linear proportional integral derivative (PID) control, but requires significantly less control energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.