Abstract Airborne Light Detection and Ranging (LiDAR) and Landsat data were evaluated as auxiliary information with the intent to increase the precision of growing stock volume estimates in field-based forest inventories. The aim of the study was to efficiently utilize both wall-to-wall Landsat data and a sample of LiDAR data using model-assisted estimation. Variables derived from the Landsat 7 ETM + satellite image were spectral values of blue, green, red, near infra-red (IR), and two shortwave IR (SWIR) bands. From the LiDAR data twenty-six height and density based metrics were extracted. Field plots were measured according to a design similar to the 10th Finnish National Forest Inventory, although with an increased number of plots per area unit. The study was performed in a 30 000 ha area of Kuortane, Western Finland. Three regression models based on different combinations of auxiliary data were developed, analysed, and applied in the model-assisted estimators. Our results show that adding auxiliary Landsat and LiDAR data improves estimates of growing stock volume. Very precise results were obtained for the case where wall-to-wall Landsat data, LiDAR strip samples, and field plots were combined; for simple random sampling of LiDAR strips the relative standard errors (RSE) were in the range of 1–4%, depending on the size of the sample. With only LiDAR and field data the RSEs ranged from 4% to 25%. We also showed that probability-proportional-to-size sampling of LiDAR strips (utilizing predicted volume from Landsat data as the size variable) led to more precise results than simple random sampling.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call