Abstract

The deep random forest (DRF) has recently gained new attention in deep learning because it has a high performance similar to that of a deep neural network (DNN) and does not rely on a backpropagation. However, it connects a large number of decision trees to multiple layers, thereby making analysis difficult. This paper proposes a new method for simplifying a black-box model of a DRF using a proposed rule elimination. For this, we consider quantifying the feature contributions and frequency of the fully trained DRF in the form of a decision rule set. The feature contributions provide a basis for determining how features affect the decision process in a rule set. Model simplification is achieved by eliminating unnecessary rules by measuring the feature contributions. Consequently, the simplified and transparent DRF has fewer parameters and rules than before. The proposed method was successfully applied to various DRF models and benchmark sensor datasets while maintaining a robust performance despite the elimination of a large number of rules. A comparison with state-of-the-art compressed DNNs also showed the proposed model simplification’s higher parameter compression and memory efficiency with a similar classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.