Abstract

Catchpole et al. (1998, Biometrics 54, 33-46) provide a novel scheme for integrating both recovery and recapture data analyses and derive sufficient statistics that facilitate likelihood computations. In this article, we demonstrate how their efficient likelihood expression can facilitate Bayesian analyses of these kinds of data and extend their methodology to provide a formal framework for model determination. We consider in detail the issue of model selection with respect to a set of recapture/recovery histories of shags (Phalacrocorax aristotelis) and determine, from the enormous range of biologically plausible models available, which best describe the data. By using reversible jump Markov chain Monte Carlo methodology, we demonstrate how this enormous model space can be efficiently and effectively explored without having to resort to performing an infeasibly large number of pairwise comparisons or some ad hoc stepwise procedure. We find that the model used by Catchpole et al. (1998) has essentially zero posterior probability and that, of the 477,144 possible models considered, over 60% of the posterior mass is placed on three neighboring models with biologically interesting interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.