Abstract

This paper deals with the problem of model reference control for linear parameter varying (LPV) systems. The LPV systems under consideration depend on a set of parameters that are bounded and available online. The main contribution of this paper is to design an LPV model reference control scheme for LPV systems whose state-space matrices depend affinely on a set of time-varying parameters that are bounded and available online. The design problem is divided into two subproblems: the design of the coefficient matrices of the controller and the design of the gain of the state feedback controller for LPV systems. The singular value decomposition is used to obtain the coefficient matrices, while the linear matrix inequality methodology is used to obtain the parameter-dependent state feedback gain of the control scheme. A simple numerical example is used to illustrate the proposed design and a coupled-tank process example is used to demonstrate the usefulness and practicality of the proposed design. Simulation and experimental results indicate that the proposed scheme works well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call