Abstract
This paper presents a case study where a model predictive control (MPC) logic is developed for energy flexible operation of a space heating system in an educational building. A Long Short-Term Memory Neural Network (LSTM) surrogate model is trained on the output of an EnergyPlus building simulation model. This LSTM model is used within an MPC framework where a genetic algorithm is used to optimize setpoint sequences. The EnergyPlus model is used to validate the performance of the control logic. The MPC approach leads to a substantial reduction in energy consumption (7%) and energy costs (13%) with improved comfort performance. Additional energy costs savings are possible (7–16%) if a sacrifice in indoor thermal comfort is accepted. The presented method is useful for developing MPC systems in the design stages where measured data is typically not available. Additionally, this study illustrates that LSTM models are promising for MPC for buildings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have