Abstract
More than 15 years after model predictive control (MPC) appeared in industry as an effective means to deal with multivariable constrained control problems, a theoretical basis for this technique has started to emerge. The issues of feasibility of the on-line optimization, stability and performance are largely understood for systems described by linear models. Much progress has been made on these issues for non-linear systems but for practical applications many questions remain, including the reliability and efficiency of the on-line computation scheme. To deal with model uncertainty ‘rigorously’ an involved dynamic programming problem must be solved. The approximation techniques proposed for this purpose are largely at a conceptual stage. Among the broader research needs the following areas are identified: multivariable system identification, performance monitoring and diagnostics, non-linear state estimation, and batch system control. Many practical problems like control objective prioritization and symptom-aided diagnosis can be integrated systematically and effectively into the MPC framework by expanding the problem formulation to include integer variables yielding a mixed-integer quadratic or linear program. Efficient techniques for solving these problems are becoming available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.