Abstract

Amid increasing demands for planetary exploration, wide-range autonomous exploration is still a great challenge for existing planetary rovers, which calls for new planetary rovers with novel locomotive mechanisms and corresponding control strategies. This paper proposes a novel wheeled–legged mechanism for the design of planetary rovers. The leg suspension utilizes a rigid–flexible coupling mechanism with a hybrid serial–parallel topology. First, the kinematic model is derived. Then, a control strategy for the wheeled–legged rover that includes a trajectory tracking module based on the model predictive control, the steering strategy, and the wheel speed allocation algorithm is proposed. After that, three groups of cosimulations with different trajectories and speeds, and experiments are carried out. Results of both the simulations and experiments validate the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.