Abstract

This paper proposes a robust model predictive control (MPC) strategy for the trajectory tracking control of a four-mecanum-wheeled omni-directional mobile robot (FM-OMR) under various constraints. The method proposed in this paper can solve various constraints while implementing trajectory tracking of the FM-OMR. Firstly, a kinematics model with constraint relationship of the FM-OMR is established. On the basis of the kinematics model, the kinematics trajectory tracking error model of the FM-OMR is further formulated. Then, it is transformed into a constrained quadratic programming(QP) problem by the method of MPC. In addition, aiming at the speed deficiencies of conventional neural networks in QP solving, a delayed neural network (DNN) is applied to solve the optimal solution of the QP problem, and compared with the Lagrange programming neural network (LPNN) to show the rapidity of the DNN. Finally, two simulation cases considering bounded random disturbance are provided to verify the robustness and effectiveness of the proposed method. Theoretical analysis and simulation results show that the control strategy is effective and feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.