Abstract
The aim of this work is to demonstrate the response of advanced model-based predictive control (MPC) strategies for Polymer Electrolyte Membrane Fuel cell (PEMFC) systems. PEMFC are considered as an interesting alternative to conventional power generation and can be used in a wide range of stationary and mobile applications. An integrated and modular computer-aided Energy Management Framework (EMF) is developed and deployed online to an industrial automation system for monitoring and operation of a PEMFC testing unit at CERTH/CPERI. The operation objectives are to deliver the demanded power while operating at a safe region, avoiding starvation, and concurrently minimize the fuel consumption at stable temperature conditions. A dynamic model is utilized and different MPC strategies are online deployed (Nonlinear MPC, multiparametric MPC and explicit Nonlinear MPC). The response of the MPC strategies is assessed through a set of comparative experimental studies, illustrating that the control objectives are achieved and the fuel cell system operates economically and at a stable environment regardless of the varying operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.