Abstract

The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest, but there have been only a few practical algorithms exploiting the power of quantum annealers. Here we present a model predictive control (MPC) algorithm using a quantum annealer for a system allowing a finite number of input values. Such an MPC problem is classified as a non-deterministic polynomial-time-hard combinatorial problem, and thus real-time sequential optimization is difficult to obtain with conventional computational systems. We circumvent this difficulty by converting the original MPC problem into a quadratic unconstrained binary optimization problem, which is then solved by the D-Wave quantum annealer. Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated. For both, the D-Wave method exhibits better performance than the classical simulated annealing method. Our results suggest new applications of quantum annealers in the direction of dynamic control problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.