Abstract
Quantum annealers are an emerging computational architecture that have the potential to address some challenging computational issues that will be left unresolved as we approach the end of the Moore's Law era of computing. D-Wave quantum annealers are designed to solve a challenging set of problems - quadratic unconstrained binary optimization problems. This makes them a natural fit for solving problems with binary or Boolean variables. Here, we explore the use of a quantum annealer to solve Boolean tensor factorization. The goal of Boolean tensor factorization is to represent a high-dimensional tensor filled with Boolean values as a product of Boolean matrices and a Boolean core tensor. We show that a particular Boolean tensor factorization problem (called Tucker-1 factorization) can be decomposed into a sequence of quadratic unconstrained binary optimization problems that can be solved with a D-Wave 2000Q quantum annealer. While quantum annealers specifically and quantum computers in general are at a fairly early stage in their development, they are currently capable of solving these Boolean tensor factorization problems. Our results show that for fairly small tensors, we are frequently able to obtain an accurate (sometimes exact) factorization using quantum annealing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.