Abstract

The dynamic properties of vibration control systems pose unique requirements and challenges on the implementation of model predictive control (MPC) algorithms with stability and feasibility guarantees. This article presents a comprehensive experimental comparison of computation timing and damping performance for various MPC methods; analyzing their offline and online properties in active vibration control and their impact on practical implementability. Optimal and sub-optimal MPC algorithms providing guaranteed stability and constraint feasibility have been applied to the real-time active vibration attenuation of a lightly damped mechanical test structure. Based on the experiments presented in this paper, the standard and sequential quadratic programming-based, optimal and sub-optimal minimum time multi-parametric programming-based and the sub-optimal Newton–Raphson’s algorithm-based MPC methods demonstrate closely comparable vibration attenuation performance. The offline and online timing analysis indicates that the underlying difference between the investigated MPC algorithms lies mainly in practical implementability difficulties caused by inherent algorithm efficiency, rendering certain variants of MPC more suitable for vibration control than others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call