Abstract

Advances in the field of metasurfaces require simulation of large-scale metasurfaces that extend over many light wavelengths. Adopting standard numerical methods leads to models featuring a large number of degrees of freedom, which are prohibitive to solve within a time window compatible with the design workflow. Therefore, this demands developing the techniques to replace large-scale computational models with simpler ones, still capable of capturing the essential features but imposing a fraction of the initial computational costs. In this work, we present a simulation approach in order to handle reduced order analyses of large-scale metasurfaces of arbitrary elements. We use the discrete dipole approximation in conjunction with the discrete complex image method and hierarchical matrix construction as a common theoretical framework for dipole approximation in the hierarchy of individual elements and the array scale. We extract the contributions of multipoles in the scattering spectra of the nanoantennas f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call