Abstract

Discrete complex image method is introduced to get a closed-form dyadic Green’s function by a sum of spherical waves. However, the simulation result by the traditional discrete complex image method is only valid in near-field for several wavelengths. In this paper, we analyze the form of spectral domain dyadic Green’s function in the whole kρ plane and the variety of valid range of simulation results by different sampling paths in two-level discrete complex image method. Consequently, for dyadic Green’s function, surface wave pole contribution both in spectral domain and spatial domain is clarified. We introduce the automatic incorporation of surface wave poles in discrete complex image method without extracting surface wave poles. The contribution of surface wave poles in spectral domain and spatial domain dyadic Green’s function is further confirmed in the new

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.