Abstract

PurposeTo reduce the computational scale for quasi-magnetostatic problems, model order reduction is a good option. Reduced-order modelling techniques based on proper orthogonal decomposition (POD) and centroidal Voronoi tessellation (CVT) have been used to solve many engineering problems. The purpose of this paper is to investigate the computational principle, accuracy and efficiency of the POD-based and the CVT-based reduced-order method when dealing with quasi-magnetostatic problems.Design/methodology/approachThe paper investigates computational features of the reduced-order method based on POD and CVT methods for quasi-magnetostatic problems. Firstly the construction method for the POD and the CVT reduced-order basis is introduced. Then, a reduced model is constructed using high-fidelity finite element solutions and a Galerkin projection. Finally, the transient quasi-magnetostatic problem of the TEAM 21a model is studied with the proposed reduced-order method.FindingsFor the TEAM 21a model, the numerical results show that both POD-based and CVT-based reduced-order approaches can greatly reduce the computational time compared with the full-order finite element method. And the results obtained from both reduced-order models are in good agreement with the results obtained from the full-order model, while the computational accuracy of the POD-based reduced-order model is a little higher than the CVT-based reduced-order model.Originality/valueThe CVT method is introduced to construct the reduced-order model for a quasi-magnetostatic problem. The computational accuracy and efficiency of the presented approaches are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call