Abstract

Naphthenic acids (NAs) originate from bitumen and are considered a major contributor to acute toxicity in oil sands process-affected water (OSPW) produced from bitumen extraction processes. To reclaim oil sands tailings and remediate OSPW, in-pit fluid fine tailings can be water-capped as end pit lakes (EPL). Addressing NAs present in OSPW, either through removal, dilution or degradation, is an objective for oil sands reclamation. EPLs can remediate NAs through degradation or dilution or both. To assess and understand degradation potential, Chlorella kessleri and Botryococcus braunii were tested for their tolerance to, and ability to biodegrade, three model NAs (cyclohexanecarboxylic acid, cyclohexaneacetic acid, and cyclohexanebutyric acid). Water sourced from the industry's first EPL, the Base Mine Lake (BML), was used alone as an inoculum or co-cultured with C. kessleri to biodegrade cyclohexanecarboxylic acid and cyclohexanebutyric acid. All cultures metabolized the model compounds via β-oxidation. Biodegradation by the co-culture of C. kessleri and BML inoculum was most effective and rapid: the cyclohexaneacetic acid generated from cyclohexanebutyric acid could be further degraded by the co-culture, while the cyclohexaneacetic acid generated could not be consumed by pure algal cultures or BML inoculum alone. Adding C. kessleri greatly increased the diversity of the microbial community in the BML inoculum; many known hydrocarbon and NA degraders were identified from the 16S rRNA gene sequencing from this co-culture. This more diverse microbial community could have potential for EPL remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.