Abstract

We describe an occupation-number-like picture of fractional quantum Hall states in terms of polynomial wave functions characterized by a dominant occupation-number configuration. The bosonic variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a "squeezing rule" that constrains allowed configurations to be restricted to those obtained by squeezing the dominant configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be determined to which actual experimental fractional quantum Hall effect states they apply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.