Abstract
The Borman Expressway is a heavily traveled 16-mi segment of the Interstate 80/94 freeway through Northwestern Indiana. The Lake and Porter counties through which this expressway passes are designated as particulate matter <2.5 µm (PM2.5) and ozone 8-hr standard nonattainment areas. The Purdue University air quality group has been collecting PM2.5, carbon monoxide (CO), wind speed, wind direction, pressure, and temperature data since September 1999. In this work, regression and neural network models were developed for forecasting hourly PM2.5 and CO concentrations. Time series of PM2.5 and CO concen trations, traffic data, and meteorological parameters were used for developing the neural network and regression models. The models were compared using a number of statistical quality indicators. Both models had reasonable accuracy in predicting hourly PM2.5 concentration with coefficient of determination ~0.80, root mean square error (RMSE) <4 µg/m3, and index of agreement (IA) >0.90. For CO prediction, both models showed moderate forecasting performance with a coefficient of determination ~0.55, RMSE ~0.50 ppm, and IA ~0.85. These models are computationally less cumbersome and require less number of predictors as compared with the deterministic models. The availability of real time PM2.5 and CO forecasts will help highway managers to identify air pollution episodic events beforehand and to determine mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.