Abstract
ABSTRACT This study describes the development of a batch-to-glass conversion model for a container-glass melting furnace. The model accounts for the relationship between the temperature history of the batch particles, batch properties, and the rate of melting by coupling the heat transfer and batch conversion kinetics models. The heat transfer within the batch is modeled by a spatially one-dimensional, convective-conductive heat balance, while the conversion kinetics is described using stretched exponential, differential Avrami, and Šesták–Berggren models based on silica dissolution data. We show that the simulated melting rate significantly changes when the conversion kinetics is considered, indicating a critical importance of the temperature history of the feed particles for the glass melting process. Finally, we summarize the limitations of the batch model and discuss the key factors to be accounted for in more advanced versions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have