Abstract
We define the modular treewidth of a graph as its treewidth after contraction of modules. This parameter properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments can be computed in polynomial time for CNF formulas whose incidence graphs have bounded modular treewidth. Our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial bounding the runtime of our algorithm depends on the modular treewidth of the input formula. We show that it is unlikely that this dependency can be avoided by proving that SAT is W[1]-hard when parameterized by the modular incidence treewidth of the given CNF formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.