Abstract

A model-based imaging framework is applied to correct the target distortion seen in microwave imaging through a periodic wall structure. In addition to propagation delays caused by the wall, it is shown that the structural periodicity induces high-order space harmonics leading to other ghost artifacts in the through-wall image. To overcome these distortions, the periodic layer Green’s function is incorporated into the forward model. A linear back-projection solution and a nonlinear minimization solution are applied to solve the inverse problem. The model-based back-projection image corrects the distortion and has higher resolution compared with free space due to the inclusion of multipath propagation through the periodic wall, but considerable sidelobe clutter is present. The nonlinear solution not only corrects target distortion without clutter but also reduces the solution to a sparse form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.