Abstract

Abstract. Beginning from the shallow water equations (SWEs), a nonlinear self-similar analytic solution is derived for barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two ways. (1) The solution is valid for intensifying jets. (2) The influence of nonlinear advection is included. The SWEs are scaled to the case of a topographically controlled jet, and then solved by introducing a similarity variable, η = cxnxyny. The nonlinear solution, valid for topographies h = h0 − αxy3, takes the form of the Lambert W-function for pseudo velocity. The linear solution, valid for topographies h = h0 − αxy−γ, takes the form of the error function for transport. Kuehl's results considered the case −1 ≤ γ < 1 which admits expanding jets, while the new result considers the case γ < −1 which admits intensifying jets and a nonlinear case with γ = −3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.