Abstract

PC-19-INV: In order to clarify the mechanism of superconductivity in the iron-based compound recently discovered by Hosono’s group, we have first constructed a tight-binding model in terms of the maximally localized Wannier orbitals from a first-principles electronic structure calculation. The model has turned out to involve all the five Fe 3d bands. This is used to calculate the spin and charge susceptibilities with the five-band random-phase approximation, which are then plugged into the linearised Eliashberg equation. For a doped system we obtain an unconventional s-wave pairing with sign-reversing gap functions. To be more precise, the gap function is a 5 × 5 matrix, for which the diagonal elements mainly comprise d x 2 - y 2 and d yz , d xz orbital components. The strong dependence of the gap between different orbitals may be observed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.