Abstract
We develop an automata-theoretic framework for reasoning about linear properties of infinite- state sequential systems. Our framework is based on the observation that states of such systems, which carry a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions between states can be simulated by finite-state automata. Checking that the system satisfies a temporal property can then be done by an alternating two-way automaton that navigates through the tree. We introduce path automata on trees. The input to a path automaton is a tree, but the automaton cannot split to copies and it can read only a single path of the tree. In particular, two- way nondeterministic path automata enable exactly the type of navigation that is required in order to check linear properties of infinite-state sequential systems.We demonstrate the versatility of the automata-theoretic approach by solving several versions of the model-checking problem for LTL specifications and prefix-recognizable systems. Our algorithm is exponential in both the size of (the description of) the system and the size of the LTL specification, and we prove a matching lower bound. This is the first optimal algorithm for solving the LTL model-checking problem for prefix recognizable systems. Our framework also handles systems with regular labeling.KeywordsModel CheckRegular ExpressionLabel FunctionInput TreeTree AutomatonThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.