Abstract

In this paper we develop an automata-theoretic framework for reasoning about infinite-state sequential systems. Our framework is based on the observation that states of such systems, which carry a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions between states can be simulated by finite-state automata. Checking that a system satisfies a temporal property can then be done by an alternating two-way tree automaton that navigates through the tree. We show how this framework can be used to solve the model-checking problem for μ-calculus and LTL specifications with respect to pushdown and prefix-recognizable systems. In order to handle model checking of linear-time specifications, we introduce and study path automata on trees. The input to a path automaton is a tree, but the automaton cannot split to copies and it can read only a single path of the tree. As has been the case with finite-state systems, the automata-theoretic framework is quite versatile. We demonstrate it by solving the realizability and synthesis problems for μ-calculus specifications with respect to prefix-recognizable environments, and extending our framework to handle systems with regular labeling regular fairness constraints and μ-calculus with backward modalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.