Abstract

In this study, we propose a two-stage optimal control framework for a fed-batch bioreactor. The high-level controller aims to obtain the optimal feed trajectory that maximizes the final time productivity and yield using a nominal model. By contrast, the low-level controller maintains the high-level performance in the presence of the model-plant mismatch and real-time disturbances. This two-stage decomposition can perform the closed-loop operation with less online recomputation. To solve the high-level optimization, differential dynamic programming (DDP), a model-based reinforcement learning that employs the derivatives of the model is applied. Three types of low-level controllers are proposed: DDP controller, a model predictive control (MPC) that tracks the high-level trajectory, and an economic MPC. We first validate that DDP yields as good result as the direct method. Second, we compare the three low-level controllers and verify the necessity of the two-stage decomposition through the studies on a bioreactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.