Abstract

In this work, we propose a conceptual framework for integrating dynamic economic optimization and model predictive control (MPC) for optimal operation of nonlinear process systems. First, we introduce the proposed two-layer integrated framework. The upper layer, consisting of an Economic MPC (EMPC) system that uses real-time measurements, computes economically optimal time-varying operating trajectories for the process by optimizing a time-dependent economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model. The lower feedback control layer may utilize conventional MPC schemes or even classical control to compute feedback control actions that force the process state to track the time-varying operating trajectories computed by the upper layer EMPC. Such a framework takes advantage of the EMPC ability to compute optimal process time-varying operating policies using a dynamic process model instead of steady-state models, and the incorporation of suitable constraints on the EMPC allows calculating operating process state trajectories that can be tracked by the control layer. Second, we prove practical closed-loop stability including an explicit characterization of the closed-loop stability region. Finally, we demonstrate through extensive simulations using a chemical process model that the proposed framework can achieve stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.