Abstract
DC microgrids require advanced protection techniques for fault detection and isolation (FDI). In this work, an FDI method able to respond to different types of component faults is developed based on system modeling. First, the state-space representation of a multiterminal dc microgrid with component faults is derived. Then, an FDI function based on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathcal {H}}_{-}/{\mathcal {H}}_{\infty }$ </tex-math></inline-formula> observers is designed. To achieve the desired selectivity in fault isolation, the linear matrix inequality (LMI) optimization approach is adopted in the observer design. The performance of the proposed FDI method is verified under the real-time (RT) simulation of a three-terminal low-voltage dc microgrid and with a small-scale laboratory dc grid. The proposed FDI method is proved to be effective to detect and isolate different faults in dc microgrids with a response time of 1 ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.