Abstract
A combined data-driven and observer-design methodology for fault detection and isolation (FDI) in hybrid process systems with switching operating modes is proposed in this work. The main contribution is to construct a unified framework for FDI by integrating Gaussian mixture models (GMM), subspace model identification (SMI), and results from unknown input observer (UIO) theory. Initially, a GMM is built to identify and describe the multimodality of hybrid systems by using the recorded input/output process data. A state-space model is then obtained for each specific operating mode based on SMI if the system matrices are unknown. An UIO is designed to estimate the system states robustly, based on which the fault detection is laid out through a multivariate analysis of the residuals. Finally, by designing a set of unknown input matrices for specific fault scenarios, fault isolation is carried out through the disturbance-decoupling principle from the UIO theory. A significant benefit of the developed framework is to overcome some of the limitations associated with individual model-based and data-based approaches in dealing with the problem of FDI in hybrid systems. Finally, the validity and effectiveness of the proposed monitoring framework are demonstrated using a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.