Abstract

This paper develops model-based exception mining and outlier detection for the case of object-relational data. Object-relational data represent a complex heterogeneous network, which comprises objects of different types, links among these objects, also of different types, and attributes of these links. We follow the well-established exceptional model mining (EMM) framework, which has been previously applied for subgroup discovery in propositional data; our novel contribution is to develop EMM for relational data. EMM leverages machine learning models for exception mining: An object is exceptional to the extent that a model learned for the object data differs from a model learned for the general population. In relational data, EMM can therefore be used for detecting single outlier or exceptional objects. We combine EMM with state-of-the-art statistical-relational model discovery methods for constructing a graphical model (Bayesian network), that compactly represents probabilistic associations in the data. We investigate several outlierness metrics, based on the learned object-relational model, that quantify the extent to which the association pattern of a potential outlier object deviates from that of the whole population. Our method is validated on synthetic data sets and on real-world data sets about soccer and hockey matches, IMDb movies and mutagenic compounds. Compared to baseline methods, the EMM approach achieved the best detection accuracy when combined with a novel outlinerness metric. An empirical evaluation on soccer and movie data shows a strong correlation between our novel outlierness metric and success metrics: Individuals that our metric marks out as unusual tend to have unusual success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.