Abstract
Exceptional Model Mining (EMM) is a local pattern mining framework that generalizes subgroup discovery. In EMM, we look for subsets of objects-subgroups-whose model deviates significantly from the same model fitted on the overall dataset. Multi-objective Optimization (MOO) is an area of Multiple Criteria Decision Making where two or more functions need to be optimized at the same time and the goal is to find the best compromise between the concurrent objectives. We introduce a new model class for EMM in a MOO setting called Exceptional Pareto Front Mining. We design fitting quality measures that take into account both the distance between models and the relevance of the subgroups. We propose a beam search for top-K EMM whose added-value is studied on both synthetic and real life datasets. Among others, we discuss a use case on hyperparameter optimization in machine learning for both regression and multi-label classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.