Abstract

A mechanistic model was developed as an extension of the Activated Sludge Model No. 1 to describe three nitrous oxide (N2O) production pathways in a laboratory-scale anammox-enriched granular sequencing batch reactor. Heterotrophic denitrification and two processes mediated by ammonia oxidizing bacteria (AOB), that is, ammonia (NH4+) oxidation via hydroxylamine (NH2OH) and autotrophic denitrification, were considered. A systematic model calibration and validation protocol was developed to obtain a unique set of kinetic parameters in the extended model. The dynamic nitrate (NO3-), nitrite (NO2-), NH4+ and N2O behaviors were accurately predicted (R2 ≥ 0.81) under five different nitrogen loading conditions. The predicted N2O production factor ranged from 1.7 to 2.9%. The model-based analysis also revealed the dominant N2O production mechanisms in terms of the actual process conditions, that is, NH4+ oxidation via NH2OH when only NH4+ was supplied, heterotrophic denitrification when only NO2- was supplied, and a shift of the dominant mechanism when a mixture of NH4+ and NO2- was supplied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.