Abstract

BackgroundMoxifloxacin (MOX) is used as a first-choice drug to treat multidrug-resistant tuberculosis (MDR-TB); however, evidence-based dosing optimization should be strengthened by integrative analysis. The primary goal of this study was to evaluate MOX efficacy and toxicity using integrative model-based approaches in MDR-TB patients.MethodsIn total, 113 MDR-TB patients from 5 different clinical trials were analyzed for the development of a population pharmacokinetics (PK) model. A final population PK model was merged with a previously developed lung-lesion distribution and QT prolongation model. Monte Carlo simulation was used to calculate the probability target attainment value based on concentration. An area under the concentration-time curve (AUC)-based target was identified as the minimum inhibitory concentration (MIC) of MOX isolated from MDR-TB patients.ResultsThe presence of human immunodeficiency virus (HIV) increased clearance by 32.7% and decreased the AUC by 27.4%, compared with HIV-negative MDR-TB patients. A daily dose of 800 mg or a 400-mg, twice-daily dose of MOX is expected to be effective in MDR-TB patients with an MIC of ≤0.25 µg/mL, regardless of PK differences resulting from the presence of HIV. The effect of MOX in HIV-positive MDR-TB patients tended to be decreased dramatically from 0.5 µg/mL, in contrast to the findings in HIV-negative patients. A regimen of twice-daily doses of 400 mg should be considered safer than an 800-mg once-daily dosing regimen, because of the narrow fluctuation of concentrations.ConclusionsOur results suggest that a 400-mg, twice-daily dose of MOX is an optimal dosing regimen for MDR-TB patients because it provides superior efficacy and safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.