Abstract

BackgroundThe optimal marker for cyclosporine (CsA) monitoring in transplantation patients remains controversial. However, there is a growing interest in the use of the area under the concentration-time curve (AUC), particularly for cyclosporine dose adjustment in pediatric hematopoietic stem cell transplantation. In this paper, we develop Bayesian limited sampling strategies (B-LSS) for cyclosporine AUC estimation using population pharmacokinetic (Pop-PK) models and investigate related issues, with the aim to improve B-LSS prediction performance.MethodsTwenty five pediatric hematopoietic stem cell transplantation patients receiving intravenous and oral cyclosporine were investigated. Pop-PK analyses were carried out and the predictive performance of B-LSS was evaluated using the final Pop-PK model and several related ones. The performance of B-LSS when targeting different versions of AUC was also discussed.ResultsA two-compartment structure model with a lag time and a combined additive and proportional error is retained. The final covariate model does not improve the B-LSS prediction performance. The best performing models for intravenous and oral cyclosporine are the structure ones with combined and additive error, respectively. Twelve B-LSS, consisting of 4 or less sampling points obtained within 4 hours post-dose, predict AUC with 95th percentile of the absolute values of relative prediction errors of 20% or less. Moreover, B-LSS perform better for the prediction of the ‘underlying’ AUC derived from the Pop-PK model estimated concentrations that exclude the residual errors, in comparison to their prediction of the observed AUC directly calculated using measured concentrations.ConclusionsB-LSS can adequately estimate cyclosporine AUC. However, B-LSS performance is not perfectly in line with the standard Pop-PK model selection criteria; hence the final model might not be ideal for AUC prediction purpose. Therefore, for B-LSS application, Pop-PK model diagnostic criteria should additionally account for AUC prediction errors.

Highlights

  • The optimal marker for cyclosporine (CsA) monitoring in transplantation patients remains controversial

  • Bayesian limited sampling strategies (B-Limited sampling strategy (LSS)) development and validation Using the nine available sampling points of each PK profile included in this study, we evaluated the performance of all possible combinations that contain one, two, three, or four concentration-time points, which gives rise to a total number of 255 LSS to be tested

  • Final population pharmacokinetic (Pop-PK) model The initial model analyses for the description of CsA PK data suggested a twocompartment structure with a combined additive and proportional error model. This structural model was parameterized in terms of: clearance (CL), apparent volume of distribution of the central compartment (Vc), apparent volume of distribution of the peripheral compartment (Vp), inter-compartmental transfer rate (Q), absorption rate (KA), lag time in oral absorption (ALAG), and oral bioavailability (F)

Read more

Summary

Introduction

The optimal marker for cyclosporine (CsA) monitoring in transplantation patients remains controversial. Treatment failure, adverse effects, and toxicity can still arise even in situations where C0 is within the recognized therapeutic range [3,4]. These risks call for the implication of other PK based surrogates, such as the area under the concentration-time curve (AUC) which is generally known as the best indicator of drug systemic exposure. While its use as an optimal marker for immunosuppressant agents monitoring remains controversial its correlation with clinical outcomes is increasingly being investigated [5,6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call