Abstract
Abstract Smart active packaging is an innovative packaging system that combines the benefits of measuring, estimating or predicting different aspects of food quality or safety with the release of an active substance that extends product shelf life. Nevertheless, in its typical configuration, the active packaging and the smart packaging are not connected, and the information provided is not exploited to design the release of the active substance. In this work, we demonstrate how smart active packaging systems using predictive mathematical models allow the automatic optimisation of food packaging design and the prediction of the expected shelf life along the food chain. On the one hand, the system calculates the best design of the active packaging and the concentration of the active substance in the different layers that maximise food quality and safety. On the other hand, the model allows to calculate and update shelf life values along the food chain under unexpected changes in the storage conditions. Shelf life estimations and prediction will help distributors and sellers to adjust the product market prices. For example, prices can be lowered to avoid food losses when the product is close to its use-by date. Hake (Merluccius merluccius) represents an example of a highly relevant and perishable food that can be conserved using natural antimicrobials. Therefore, the case study selected to illustrate the proposed methodology consists of the smart active packaging of hake using carvacrol as the active substance (antimicrobial). Besides, different polymers are considered as possible active packaging materials. The Matlab ™ codes required to perform the simulations of the models described in this work as well as the optimisations for packaging design are available at https://doi.org/10.5281/zenodo.3244153 .
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have