Abstract
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features.
Highlights
The brain first dissects the content of a visual scene into its components, such as oriented edges, and further combines these to form representations of complex objects
Two-photon Calcium Imaging of Grating and Plaid Pattern Responses We measured visually evoked neuronal responses in layer 2/3 of V1 in anesthetized mice using two-photon calcium imaging with Oregon Green BAPTA-1 (OGB-1) (Figures 1A,B; n = 8 mice; 56 imaged regions containing 4088 neurons in total)
Four drifting high-contrast gratings and four plaid stimuli composed of orthogonal gratings were presented to the contralateral eye of the animal (Figure 1C)
Summary
The brain first dissects the content of a visual scene into its components, such as oriented edges, and further combines these to form representations of complex objects. The recorded trial-averaged plaid responses are denoted p; the predicted plaid responses under the pattern and component cell models are denoted pp and pc, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.