Abstract
This paper considers forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models given a set of potentially relevant predictors. We propose a frequentist model averaging criterion, an asymptotically unbiased estimator of the mean squared forecast error (MSFE), to select forecast weights. In contrast to the existing literature, we derive the MSFE in a local asymptotic framework without the i.i.d. normal assumption. This result allows us to decompose the MSFE into the bias and variance components and also to account for the correlations between candidate models. Monte Carlo simulations show that our averaging estimator has much lower MSFE than alternative methods such as weighted AIC, weighted BIC, Mallows model averaging, and jackknife model averaging. We apply the proposed method to stock return predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.