Abstract

Forecasting a macroeconomic variable is challenging in an environment with many potential predictors whose predictive ability can vary over time. We compare two approaches to forecasting U.S. employment growth in this type of environment. The first approach applies bootstrap aggregating (bagging) to a general-to-specific procedure based on a general dynamic linear regression model with 30 potential predictors. The second approach considers several methods for combining forecasts from 30 individual autoregressive distributed lag (ARDL) models, where each individual ARDL model contains a potential predictor. We analyze bagging and combination forecasts at multiple horizons over four different out-of-sample periods using a mean square forecast error (MSFE) criterion and forecast encompassing tests. We find that bagging forecasts often deliver the lowest MSFE. Interestingly, we also find that incorporating information from both bagging and combination forecasts based on principal components often leads to further gains in forecast accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.