Abstract

The implementation of control systems in metal forming processes improves product quality and productivity. By controlling workpiece properties during the process, beneficial effects caused by forming can be exploited and integrated in the product design. The overall goal of this investigation is to produce tailored tubular parts with a defined locally graded microstructure by means of reverse flow forming. For this purpose, the proposed system aims to control both the desired geometry of the workpiece and additionally the formation of strain-induced α′-martensite content in the metastable austenitic stainless steel AISI 304 L. The paper introduces an overall control scheme, a geometry model for describing the process and changes in the dimensions of the workpiece, as well as a material model for the process-induced formation of martensite, providing equations based on empirical data. Moreover, measurement systems providing a closed feedback loop are presented, including a novel softsensor for in-situ measurements of the martensite content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call